
Cryptography in OpenBSD� An Overview

Theo de Raadt� Niklas Hallqvist� Artur Grabowski� Angelos D� Keromytis� Niels Provos

fderaadt�niklas�art�angelos�provosg�openbsd�org
The OpenBSD Project

Abstract

Cryptographic mechanisms are an important se�
curity component of an operating system in secur�
ing the system itself and its communication paths�
Indeed� in many situations� cryptography is the
only tool that can solve a particular problem� e�g��
network�level security� While cryptography by it�
self does not guarantee security� when applied cor�
rectly� it can signi�cantly improve overall security�
Since one of the main foci of the OpenBSD system is
security� various cryptographic mechanisms are em�
ployed in a number of di�erent roles�
This paper gives an overview of the cryptography

employed in OpenBSD� We discuss the various com�
ponents �IPsec� SSL libraries� stronger password en�
cryption� Kerberos IV� random number generators�
etc��� their role in system security� and their inter�
actions with the rest of the system �and� where ap�
plicable� the network��

� Introduction

An important aspect of security in a modern op�
erating system is cryptographic services and mecha�
nisms� While not a security panacea� cryptography
is sometimes the right tool in solving certain prob�
lems� In particular� cryptography is extremely useful
in solving a number of security issues in the following
three areas�

� Network security�

� Secure storage facilities�

� �Pseudo�� Random number generators�

Since one of our goals in the OpenBSD project
is to provide strong security� we have implemented a
number of protocols and services in the base system�
An OpenBSD distribution thus has full support for
such mechanisms as IPsec� SSL� Kerberos� etc� being
una�ected by export restriction laws�
Simply supporting these mechanisms� however� is

not su�cient for wide�spread use� We are constantly

trying to make their use as easy and� where possi�
ble� transparent to the end user� Thus� more work
is done in those mechanisms that can be used to
provide transparent security� e�g�� IPsec�
With this paper� we intend to give a good overview

of the cryptography currently distributed and used
in OpenBSD� and of our plans for future work� We
hope this will be of interest both to end�users and ad�
ministrators looking for better ways to protect their
host and networks� and to developers in other sys�
tems �free or otherwise� that are considering sup�
porting some of these mechanisms� We should again
caution the readers� however� that cryptography
does not solve all security problems in an operat�
ing system� and should not be considered as an end
in itself� but rather as an important piece of the se�
curity puzzle�

��� Paper Organization

The remainder of this paper is organized as
follows� section 	 describes the various network
security facilities implemented and supported in
OpenBSD� section
 covers the extensive use of ran�
dom number generators� and section � brie�y out�
lines our future plans in this area� Section con�
cludes the paper�

� Communications Security

In an increasingly networked environment� com�
munications security support in an OS is extremely
important� As there are di�erent mechanisms
and di�erent layers where one may apply security�
OpenBSD supports a number of security protocols
and mechanisms� some of which were developed �or
even designed� by our developers� In some cases�
there is considerable overlap in functionality� One
of our goals is to eventually make it transparent to
the end user which such security mechanism is in
use�
The following sections give a brief overview of

these mechanisms� some detail of their implemen�

tation and integration in OpenBSD� and our plans
for future work� As we already mentioned in sec�
tion �� we consider IPsec an extremely important
tool in network security� both because of its poten�
tial for user�transparency and its �exibility� This is
re�ected by the more thorough coverage of IPsec in
the text that follows�
Other popular mechanisms� such as SSH �
��� are

not covered because they are only part of our ports
system� While virtually all the developers use SSH�
there is no free implementation we can add to our
standard distribution� Furthermore� the current ver�
sion of SSH is restricted by the RSA patent in the
US� We are waiting for a free implementation to be�
come available as part of the IETF standardization
process of SSH� Such an implementation would be
linked with our libssl�

��� SSL

In OpenBSD libssl provides a toolkit for the
Secure Socket Layer �SSL v	�v
� and Transport
Layer Security �TLS v�� ��� which provide strong
cryptographic protection for network communica�
tion such as server authentication and data encryp�
tion� The Secure Socket Layer is currently used by
web servers� e�g�� Apache as shipped with OpenBSD�
and browsers like Netscape Communicator� In the
future� applications like telnet and ftp will be con�
verted to use TLS� possibly even during our network
installation process�
Due to patent restrictions� libssl in the

OpenBSD distribution supports only digital signa�
tures with DSA �	��� but an additional package is
provided for users outside the USA to add back
RSA�signature ���� support� This is implemented
by providing two shared libraries� libssl�so����

has only function stubs for RSA support� while
libssl�so���� contains full RSA support� Notice
that shared library minor�version number changes
typically indicate interface�transparent bug �xes�

��� IP Security �IPsec�

����� Background

While IP has proven to be an e�cient and robust
protocol when it comes to actually getting data
across the Internet� it does not inherently provide
any protection of that data� There are no facili�
ties to provide con�dentiality� or to ensure the in�
tegrity or authenticity of IP �
�� datagrams� In or�
der to remedy the security weaknesses of IP� a pair
of protocols collectively called IP Security� or IPsec
�
� ��� for short� has been standardized by the IETF�

The protocols are ESP �Encapsulating Security Pay�
load� �	� �� and AH �Authentication Header� ��� ����
Both provide integrity� authenticity� and replay pro�
tection� while ESP adds con�dentiality to the pic�
ture� IPsec can also be made to protect IP data�
grams for other hosts� The IPsec endpoints in this
arrangement thereby become security gateways and
take part in a virtual private network �VPN� where
ordinary IP packets are tunneled inside IPsec �
���

Network�layer security has a number of very im�
portant advantages over security at other layers of
the protocol stack� Network�layer protocols are gen�
erally hidden from applications� which can there�
fore automatically and transparently take advantage
of whatever network�layer encryption services that
host provides� Most importantly� network�layer pro�
tocols o�er a remarkable �exibility not available at
higher or lower layers� They can provide security
on an end�to�end �securing the data between two
hosts�� route�to�route �securing data passing over a
particular set of links�� edge�to�edge �securing data
as it passes from a �secure� network to an �insecure�
one�� or a combination of these�

����� Operation

Central to both ESP and AH are an abstraction
called security association� or SA� In each SA there
is information �algorithm IDs� keys� etc�� stored
describing how the wanted protection should be
setup� For two peers to be able to communicate
they need matching SAs at each end� When de�
ciding what SA should be used for outbound traf�
�c� some kind of security policy database needs to
be consulted� In OpenBSD� this is currently imple�
mented as an extension to the routing table� where
source�destination addresses� protocol� and ports
serve as selectors�

Looking at the wire format� IPsec works by insert�
ing an extra header between the IP header and the
payload� This header holds IPsec�speci�c data� such
as an anti�replay sequence number� cryptographic
synchronization data� and integrity check values� If
the security protocol in use is ESP� a cryptographic
transform is applied to the payload in�place� e�ec�
tively hiding the data� As an example� an UDP data�
gram protected by ESP is shown in �gure ��

This mode of operation is called transport mode�
as opposed to tunnel mode which is typically used
when a security gateway is protecting datagrams for
other hosts� Tunnel mode di�ers from transport
mode by the addition of a new� outer� IP header con�
sisting of the security gateways� addresses instead of
the actual source and destination� as shown in �gure

Encrypted

Header
IP

Header
ESP UDP

Header Data
UDP

Figure �� IPsec Transport Mode

Encrypted

Header
IP

Header
ESP UDP

Data
UDP
Header

IP
Header

Figure 	� IPsec Tunnel Mode

	�
As was mentioned earlier� this mode is ideal for

implementing VPNs�
The last� but not least� part of the picture is a key

management infrastructure� IPsec can only work if
the keys in the SAs are synchronized and updated
in a secure fashion� To automate this task� di�erent
protocols have been devised that allow two peers to
compute identical keys without actually sending all
the data needed for it over the wire ��� ��� The Inter�
net Key Exchange� IKE� is one such� and Photuris is
another� The main di�erence between these two lies
in the complexity level� IKE is a very complex proto�
col which� however� o�ers considerable �exibility in
negotiating and establishing SAs� IKE is the o�cial
IETF standard� Both protocols work in a similar
vein� by �rst building an encrypted application�level
�tunnel� where further key exchanges take place�
The Di�e�Hellman algorithm ��� is used to make it
computationally hard to crack the key computation�
Every SA is assigned a lifetime� either in wall�clock
time or in volume� and when such a lifetime expires�
the key management daemon renegotiates with the
peer� creating new SAs with fresh keys�

����� OpenBSD IPsec

OpenBSD�s IPsec stack was written by John Ioan�
nidis and Angelos Keromytis ���� and later enhance�
ments and �xes have been provided by Niels Provos
and Niklas Hallqvist� The core is stable and in pro�
duction use securing data in many places all over
the world� as it does not su�er from US export reg�
ulations� A number of companies� agencies� insti�
tutions� and individuals are using the code� a fact

that has helped us signi�cantly in �nding and �xing
bugs� and in motivating further development�
Recently� the API used to setup and maintain the

SA database was switched to the standard PF KEY
�	
�� This API is much more �exible than the
old PF ENCAP interface� Available algorithms for
encryption are DES �	���
DES� Cast��	�� Blow�
�sh �
�� and Skipjack �support for the latter� de�
spite its known weaknesses� was added after re�
quests by US Government agencies using our IPsec
stack�� One�way hash algorithms are MD� SHA�
and RIPEMD��� �	�� 	�� ���� For key management�
two daemons are available� isakmpd implementing
IKE �	�� 		� �	� and photurisd implementing Pho�
turis ��
��

����� Future Work in IPsec

Our IPsec implementation is under constant devel�
opment and improvement� as there remain a number
of unresolved issues�

� Our IPv� stack is not yet integrated with our
IPsec implementation�

� We want a more �exible� possibly uni�ed policy
mechanism� In particular� we are looking into
merging routing� security policy� and protocol
block lookups�

� Develop or borrow a policy API� rather
than use private extensions to PF KEY and
PF ROUTE�

� isakmpd has not yet covered all mandatory re�
quirements in the RFCs�

� A DNSSEC ��� implementation� and integration
in isakmpd and photurisd� will be needed for op�
portunistic encryption�

� isakmpd and photurisd are not linked with lib�
ssl so they will not automatically support RSA
when an RSA�supporting libssl is installed�

� We do not currently do on�demand keying
�a facility available in the past through the
PF ENCAP API��

� Finally� we intend to support some application
API for requesting security and possibly other
services� With that in place� we intend to have
all networking applications take advantage of
IPsec�

All of these are improvements that we want to
address in the time�frame for the next release�

��� Kerberos

In a networked environment� it is very important
to be able to authenticate users in a secure way over
insecure networks� Kerberos is a network authenti�
cation protocol using a trusted third�party to pro�
vide authentication and basic session�key exchange�

Kerberos is built around a central key distribu�
tion center �KDC� which keeps a database of clients
and servers �called principals� and their private keys�
Encryption in Kerberos is based on DES �	��� When
the client wants to use some service it issues a re�
quest to the KDC for a ticket for that service� The
server returns a message encrypted with the client�s
private key� containing three parts� a session key
that can be used for encryption between the client
and the server� a timestamp� and a ticket� The ticket
is encrypted with the private key of the server and
contains the name of the client� a timestamp� the
clients network address� lifetime of the ticket� and
the same session key that the client obtained� The
ticket can be passed to the server for authentication�

Kerberos �	�� was originally developed by project
Athena at MIT� but was not exportable from the US
due to legal restrictions� The cryptographic func�
tionality was removed and a �Bones� distribution
was created and exported� The cryptographic in�
terfaces were added back by Eric Young� and KTH
�The Royal Institute of Technology in Stockholm�
Sweden� maintained the code outside the USA� The
Kerberos implementation in OpenBSD is �kth�krb��
protocol version �� and is used in a number of utili�
ties�

����� Practical Uses

The simplest use of Kerberos is to authenticate users
locally on a workstation� The login� xdm� and su pro�
grams in OpenBSD have the necessary code to allow
Kerberos authentication� The next step is to provide
authentication for network protocols� The rlogin�
rsh� and telnet programs have been modi�ed to use
Kerberos� In addition to that� they can use the ses�
sion key� obtained in the authentication phase� to
encrypt the data�stream for privacy� Another very
practical use is in �kx� � a protocol to authenticate
and forward X�� connections in a secure way� Other
programs using Kerberos for authentication include
cvs� sudo� and xlock� Kerberos authentication is also
used in AFS�

One of our future goals is to allow kerberized ap�
plications to use IPsec services when possible� thus
avoiding double�encryption �and consequently de�
graded performance�� Furthermore� we intend to

integrate the Kerberos clone being developed at
KTH as soon as it is stable� especially since Ker�
beros IV only supports DES �	�� encryption�

��� S�Key

S�Key ���� ��� is a one�time password system used
for authentication� It provides protection against
replay attacks where a third party captured a pass�
word� e�g�� by means of network sni�ng� and tries
to reuse it in a new authentication session�
S�Key uses a user supplied secret pass�phrase

which is processed by a one�way function to gener�
ate a sequence of one�time passwords� In OpenBSD
the one�way function can be chosen from a variety
of computationally non�invertible hash functions like
MD �
�� or SHA� �	��� available in libc� S�Key is
still useful when other cryptographic protocols are
not available� or their implementations are not fully
trusted� e�g�� when using a conference terminal room
to login to a home machine�

� Pseudo Random Number Genera�

tors

A Pseudo Random Number Generator �PRNG�
provides applications with a stream of numbers
which have certain important properties for system
security�

� It should be impossible for an outsider to pre�
dict the output of the random number generator
even with knowledge of previous output�

� The generated numbers should not have repeat�
ing patterns which means the PRNG should
have a very long cycle length�

� A PRNG is normally just an algorithm where
the same initial starting values will yield the
same sequence of outputs�

Some applications have criteria which a�ect the
type of PRNG which is needed� For instance� later
on we will discuss IP datagram IDs and DNS �
��
query�IDs� both of these issues have qualities which
make it extremely desirable to have a PRNG which
makes e�orts to avoid emitting repetitions �thus rul�
ing out use of a true�random source��
Many other operating systems also have random

number device drivers and other related mecha�
nisms� but largely make no use of them� Some such
systems even provide such support only as optional

device drivers� therefore discouraging use �i�e�� re�
liance�� OpenBSD deviates by actually using these
mechanisms in numerous ways� A few major inter�
faces or techniques are used�

� �dev��random and similar kernel interfaces

� arc�random��� in libc

� non�repeating PRNG

Each of these� and their uses in OpenBSD� will be
covered in the following sections�

��� Kernel Randomness Pool

Computers are �generally� deterministic devices
making it very hard to produce real random num�
bers� The PRNGs we use in OpenBSD do not gen�
erate random numbers themselves� Rather� they ex�
pand the randomness they are given as input� For�
tunately� a multi�user operating system has many
external events from which it can derive some ran�
domness� In OpenBSD the kernel collects measure�
ments from various devices such as the inter�keypress
timing from terminals� the arrival time of network
packets� and the �nishing time of disk requests� The
randomness from these sources is mixed into the ker�
nel�s entropy pool� When a userland program re�
quests random data from the kernel� an MD hash
is calculated over the whole entropy pool� �folded�
in half by XOR�ing the upper and lower word of the
MD output� and returned� The user can choose the
quality of the generated random numbers by reading
output from the di�erent �dev��random devices�

��� arc�random���

The arc�random��� interface� available in the
OpenBSD libc� makes use of the kernel random�
ness pool� described in the previous section� for
seeding the keystream generator employed by the
ARC� cipher �a cipher equivalent to RSADSI�s
RC��� The interface provides support for applica�
tions to �add� randomness to the pool maintained
by arc�random���� This interface is intended as a
drop�in replacement for the traditional Unix ran�
dom��� interface� for those applications that need
higher�quality random numbers�

��� Non�repeating Random Numbers

In OpenBSD� we designed a non�repeating
pseudo�random number generator that was very fast
and did not require additional resources�

For ���bit non�repeating numbers� we used a
prime 	�� � p � 	�� and g a randomly chosen gen�
erator for Zp� Being a generator� g has the property
that any value � � x � p can be generated as x � gy

�mod p�� for some value y�
We then pick random a� b and m with 	�� � m �

	�� so that

f�n� � a � f�n� �� � b �mod m�

becomes a linear congruential generator �LCG��
We then determine the actual ID as

ID�n� � w � �gf�n� mod p��

where w is a random seed� After the linear con�
gruential generator has been exhausted� the most
signi�cant bit in ID�n� is toggled and all parame�
ters g� a� b� m� and w from above are chosen anew�
Because the linear congruential generator does not
repeat itself and a new number space is chosen af�
ter reinitialization� the generated IDs do not repeat
themselves� The PRNG is typically seeded with ma�
terial from the kernel randomness pool�

����� Randomness Used Inside the Kernel

� Dynamic sin port allocation in bind�	��

When an AF INET socket is bound to a speci�c
port number using the bind��� system call� the
process can choose the speci�c port� or elect
that the system choose� Normal UNIX behavior
resulted in the system allocating port numbers
starting at ��	� and incrementing� Our new
code chooses a random port� in the range ��	�
to �����

A similar issue existed with reserved port cre�
ation� using the bindresvport��� and rresv�
port��� library routines� which are supposed to
pick a free port in the reserved range �typically
between ��� and ��	
�� The old behavior was
to allocate decreasing port numbers starting at
��	
� The old code for these library routines
e�ected this downward search using successive
calls to bind���� we have replaced this with code
using a newer kernel interface which is much
more e�cient and chooses a random port num�
ber within the reserved range�

There are a number of poorly designed protocols
�e�g�� rsh� ftp� which are a�ected by predictable
port allocation� we believe that our approach is
making it harder for attackers to gain an edge�

� Process PIDs�

char buf�����

sprintf	buf
 ��tmp�foo�d�
 getpid	���

	void� mkdir	buf
 ������

Figure
� The Wrong Way To Generate A

�Random� Directory

Programmers often use this value as if it is ran�
dom� possibly because of the compellingly at�
tractive argument that �pid numbers are e�ec�
tively random on a busy enough system�� Code
like �srandom�getpid���� is quite common� as is
code similar to that shown in �gure
�

In a normal system the attacker will have a very
easy time predicting the PID and thus the obvi�
ous race attack is trivial� The race is as follows�
the attacker creates the directory �rst� choos�
ing the mode and ownership� subsequently it is
possible to look at and replace �les in the direc�
tory�

In OpenBSD� we use randomized PIDs� with a
couple of obvious exceptions� e�g�� init����

� RPC transaction IDs �XID��

Sun Microsystems Remote Procedure Call
�RPC� messages contain a Transaction Identi�
�er �XID� which matches a sent query against
its received reply� In most RPC systems� the
XID of the �rst message a process transmits will
be initialized using the code shown in �gure ��

Subsequently� the XID for each packet is sim�
ply incremented from this� Previously we men�
tioned that a local user might be able to guess
what kind of range the next PID on the sys�
tem might fall into� here we see that an outside
attacker might also be able to determine this
information� Our new code uses arc�random��
to initialize the XID� and also avoids using two
identical numbers consecutively�

� NFS RPC transaction IDs �XID��

The NFS protocol uses RPC packets for com�
munication� The RPC XID issue also applied
to the NFS code we encountered� and we now
use the same mechanism for NFS XIDs�

� Inode generation numbers�

The fsirand��� program makes use of
arc�random��� to generate random inode

numbers for �lesystem objects ��les� direc�
tories� etc��� This increases the security of

struct timeval now�

gettimeofday	�now��

call�msg�rm�xid � getpid	� � now�tv�sec �

now�tv�usec�

Figure �� Typical RPC Initialization Code

NFS�exported �lesystems by making it di�cult
for an attacker to guess �lehandles �which are
partially derived from inode numbers��

� IP datagram IDs�

Each IP packet contains a ���bit identi�er
which is used� if the packet has been frag�
mented� for correctly performing reassembly at
the �nal destination� Previously� this identi�
�er simply incremented every time a new packet
was sent out� By looking at the identi�er in a
sequence of packets� an outsider can determine
how busy the target machine is� Another is�
sue was avoiding disclosure of information when
using IPsec in tunneling mode� as per section
	�	�	� A naive implementation might create a
new IP header with an ID one more than the
ID in the existing IP header� This could lead to
known�plaintext attacks ��� against IPsec�

To avoid these problems� we use the non�
repeating PRNG described in section
�
�

� Randomness added to the TCP ISS value for
protection against spoo�ng attacks�

Inside the kernel� a
	�bit variable called tcp iss
declares the Initial Send Sequence Number
�ISS� to use on the next TCP �
	� session�
The predictability of TCP ISS values has been
known to be a security problem for many years
�	�� Typical systems added either
	K� ��K�
or �	�K to that value at various di�erent times�
Instead� our new algorithm adds a �xed amount
plus a random amount� signi�cantly decreasing
the chances of an attacker guessing the value
and thus being able to spoof connection con�
tents�

� Random data�block padding for cryptographic
transforms� as in RFC��	� IPsec ESP �	��

����� Randomness Used in Userland Li�

braries

� DNS query IDs typically start at � and incre�
ment for each subsequent query� An attacker

can cause a DNS lookup� e�g�� by telneting to
the target host� and spoof the reply� since the
content of the query and the ID are known or
easily predictable� Since host authentication is
still in wide�spread use� this is a serious secu�
rity vulnerability present in virtually all sys�
tems� To avoid this issue� we have modi�ed our
in�tree copy of bind��� and our libc resolver to
make use of the non�repeating PRNG�

� arc�random��� seeding� as mentioned in section

�	�

� Stronger temporary names�

Processes typically create temporary �les by
generating a random �lename via mktemp���
and then opening that �le in the �tmp di�
rectory� A more secure way for doing so is
through mkstemp���� which generates the �le�
name and opens the �le in one atomic opera�
tion� thus eliminating the potential for races�
Both functions� which reside in libc� make use
of arc�random��� to generate the random �le�
names� making it much harder for an attacker
to guess the names in advance�

� Generate salts for the various password algo�
rithms� For some more details� see section ����

����� Randomness Used in Userland Pro�

grams

� For generating fake S�Key challenges�

One problem with most versions of RFC��
��
based one time password �OTP� systems is that
it is often possible to use them to determine
whether or not a user has an account on a ma�
chine� The most trivial example of this is sys�
tems that provide a di�erent prompt if the user
has an entry in the OTP database� However�
even for systems that always provide an OTP
prompt� the prompt itself is rarely convincing
and can be trivially identi�ed as a fake� To ad�
dress this problem� the OTP code in OpenBSD
generates a consistent� credible challenge for
non�existent users and users without an entry
in the OTP database� It does so by generating
the prompt based on the hostname and a hash
of the username and the contents of a �le gen�
erated from the kernel random pool� This �le
is usually created at install time and provides a
constant source of random data� Thus� all three
components of the challenge are constant� but
only the hostname and username are known to
the attacker�

� isakmpd and photurisd use the kernel random�
ness pool for generating IKE �exchange identi�
�ers� �i�e�� protocol cookies and message IDs��
random Di�e�Hellman ��� values� and random
nonces�

� Certain games make use of the arc�random���
interface for higher quality random numbers�

� Secure Storage

One of the areas of least development in OpenBSD
has been that of secure storage� While a number of
utilities �e�g�� vi�	�� ed�	�� bdes�	�� etc�� directly
support encryption services� our goal is to provide
this service as transparently as possible to users�
Ideally� we would like a layer either over or under
the current native �lesystem that would provide safe
storage services�
As an interim solution� CFS �� is included in the

OpenBSD ports system and can be readily used�
However� it does not provide the level of trans�
parency we would like� and its performance is well
below what we consider acceptable for general use�
Clearly� more work is needed in this area�
Another issue related to secure storage is that

of secure logging� Logs �and especially security�
related logs� are extremely important in determin�
ing whether a system is under attack or has been
compromised� The current logging facility� syslog�
does not provide any facilities for detecting log�
tampering� other than the option to send log mes�
sages to another host�s syslogd� We are currently
porting the ssyslog package �
�� and are hoping to
seamlessly replace the currently�used syslogd�

The remainder of this section brie�y covers our
bcrypt� approach to protecting user passwords� de�
veloped inside OpenBSD�

��� Bcrypt

Increasing computational power makes the use of
cryptography to further system security more fea�
sible and allows for more tuneable security param�
eters such as public key length� However� one se�
curity parameter � the length and entropy of user�
chosen passwords � does not scale at all with comput�
ing power� Many systems still require user�chosen
secret passwords which are hashed to keep them
secret� When the UNIX password hash crypt���
was introduced in ����� it could not hash more
than four passwords per second� With increasingly
more powerful attackers it is common to compute

more than 	������ password hashes per second� In
OpenBSD we use the bcrypt algorithm to make the
cost of password hashing parameterizable� Its de�
sign makes it hard to optimize bcrypt�s execution
speed or use commodity hardware instead of soft�
ware� bcrypt uses a �	��bit salt and encrypts a ��	�
bit magic value� It takes advantage of the fact that
the Blow�sh algorithm �used in the core of bcrypt
for password hashing� needs a fairly expensive key
setup� thus considerably slowing down dictionary�
based attacks� bcrypt uses the arc�random��� in�
terface for password salt�generation� A comparison
between this approach and the mechanism used in
certain other Unix systems for generating salts has
shown that while arc�random��� behaved extremely
close to the statistical theoretical expectations� in
contrast� other systems produced large numbers of
collisions� making dictionary attacks faster�
A special con�guration �le� passwd�conf�
�� is

used to determine which type of password scheme
is used for a given user or group� It is possible to
use di�erent password schemes for local or YP pass�
words� For bcrypt� the number of rounds is also in�
cluded� This facilitates adapting the password veri��
cation time to increasing processor speed� Currently�
the default number of rounds for a normal user is 	��
and 	� for �root�� bcrypt is used in OpenBSD as the
default password scheme since version 	��� For more
details� see �

��

� Conclusion

In this paper� we gave an overview of the cryp�
tography used in OpenBSD� We presented the sup�
ported network security mechanisms� with particu�
lar emphasis on IP security� We then discussed the
various uses of randomness throughout the system�
Finally� we brie�y covered our plans for future work
in the area of secure storage�
A lot of work remains to be done� In the short

term� we need to complete the remaining parts of
those mechanisms still under development� keeping
in mind of course that security �and standards� is
a moving target� and constant maintenance and up�
dating will be needed� Beyond that� integration with
existing and new utilities is a major item in our
agenda� Finally� we are considering new mechanisms
that address di�erent problems� e�g�� untrusted�code
containment�
It is important to note that all the mechanisms

described in this paper are currently in use� solving
real problems� We hope that this paper will encour�
age others to add these or similar mechanisms in

their systems�

� Acknowledgments

We would like to thank Hugh Graham� Todd
Miller� and Chris Turan who provided comments
�and sometimes text� in earlier versions of this pa�
per� We would also like to thank all the OpenBSD
developers for the work they contribute to the
project� and our users for their continuing support�

� Availability

All the software described in the paper is available
through the OpenBSD web page at

http���www�openbsd�org�

	 Disclaimer

OpenBSD is based in Calgary� Canada� All indi�
viduals doing cryptography�related work do so out�
side countries that have limiting laws�

References

��� R� Atkinson� IP Authentication Header� RFC �����
August ���	�

��� R� Atkinson� IP Encapsulating Security Payload�
RFC ���
� August ���	�

��� R� Atkinson� Security Architecture for the Internet
Protocol� RFC ���	� August ���	�

��� S� Bellovin� Probable Plaintext Cryptanalysis of the
IP Security Protocols� In Proceedings of the Sympo�
sium on Network and Distributed System Security�
pages �		���� February ���
�

�	� M� Blaze� A Cryptographic File System for Unix�
In Proc� of the �st ACM Conference on Computer
and Communications Security� November �����

��� T� Dierks and C� Allen� The TLS protocol ver�
sion ���� Request for Comments �Proposed Stan�
dard� ����� Internet Engineering Task Force� Jan�
uary �����

�
� W� Di�e and M�E� Hellman� New Directions in
Cryptography� IEEE Transactions on Information
Theory� IT����������	�� Nov ��
��

��� W� Di�e� P�C� van Oorschot� and M�J� Wiener�
Authentication and Authenticated Key Exchanges�
Designs� Codes and Cryptography� ����
��	� �����

��� D� Eastlake� �rd� and C� Kaufman� Domain name
system security extensions� Request for Comments
�Proposed Standard� ���	� Internet Engineering
Task Force� January ���
�

���� N� Haller� The S�KEY one�time password system�
Request for Comments �Informational� �
��� Inter�
net Engineering Task Force� February ���	�

���� Neil M� Haller� the s�key one�time password system�
In Proceedings of the ISOC Symposium on Network
and Distributed System Security� �����

���� D� Harkins and D� Carrel� The internet key ex�
change �IKE�� Request for Comments �Proposed
Standard� ����� Internet Engineering Task Force�
November �����

���� P� Karn and W� Simpson� Photuris� Session�key
management protocol� Request for Comments �Ex�
perimental� �	��� Internet Engineering Task Force�
March �����

���� S� Kent and R� Atkinson� IP authentication header�
Request for Comments �Proposed Standard� �����
Internet Engineering Task Force� November �����

��	� S� Kent and R� Atkinson� IP encapsulating security
payload �ESP�� Request for Comments �Proposed
Standard� ����� Internet Engineering Task Force�
November �����

���� S� Kent and R� Atkinson� Security architecture for
the internet protocol� Request for Comments �Pro�
posed Standard� ����� Internet Engineering Task
Force� November �����

��
� A� Keromytis and N� Provos� The use of HMAC�
RIPEMD������� within ESP and AH� Internet
Draft� Internet Engineering Task Force� February
����� Work in progress�

���� A� D� Keromytis� J� Ioannidis� and J� M� Smith�
Implementing IPsec� In Proceedings of Global Inter�
net �GlobeCom� ���� pages ���� ��	�� November
���
�

���� RSA Laboratories� PKCS 	�
 RSA Encryption
Standard� version ��	 edition� ����� November�

���� C� Madson and R� Glenn� The use of HMAC�
MD	��� within ESP and AH� Request for Com�
ments �Proposed Standard� ����� Internet Engi�
neering Task Force� November �����

���� C� Madson and R� Glenn� The use of HMAC�
SHA����� within ESP and AH� Request for Com�
ments �Proposed Standard� ����� Internet Engi�
neering Task Force� November �����

���� D� Maughan� M� Schertler� M� Schneider� and
J� Turner� Internet security association and key
management protocol �ISAKMP�� Request for
Comments �Proposed Standard� ����� Internet En�
gineering Task Force� November �����

���� D� McDonald� C� Metz� and B� Phan� PF KEY Key
Management API� Version �� Request for Com�
ments �Informational� ���
� Internet Engineering
Task Force� July �����

���� S� P� Miller� B� C� Neuman� J� I� Schiller� and J� H�
Saltzer� Kerberos authentication and authorization
system� Technical report� MIT� December ���
�

��	� R� T� Morris� A Weakness in the ���BSD Unix
TCP�IP Software� Computing Science Technical
Report ��
� AT�T Bell Laboratories� February
���	�

���� Data Encryption Standard� January ��

�

��
� Digital Signature Standard� May �����

���� Secure Hash Standard� April ���	� Also known as�
	� Fed Reg �	��
 �������

���� D� Piper� The internet IP security domain of in�
terpretation for ISAKMP� Request for Comments
�Proposed Standard� ���
� Internet Engineering
Task Force� November �����

���� J� Postel� Domain name system structure and del�
egation� Request for Comments �Informational�
�	��� Internet Engineering Task Force� March �����

���� Jon Postel� Internet Protocol� Internet RFC
���
�����

���� Jon Postel� Transmission Control Protocol� Internet
RFC
��� �����

���� Niels Provos and David Mazi�eres� A Future�
Adaptable Password Scheme� In Proceedings of the
Annual USENIX Technical Conference� �����

���� R� Rivest� The MD	 Message�Digest Algorithm�
Internet RFC ����� April �����

��	� Bruce Schneier� Description of a New Variable�
Length Key� ���Bit Block Cipher �Blow�sh�� In Fast
Software Encryption� Cambridge Security Work�
shop Proceedings� pages ������� Springer�Verlag�
December �����

���� William Simpson� IP in IP Tunneling� Internet RFC
��	�� October ���	�

��
� Secure Syslog� http���www�core�sdi�com�Core�SDI
�english�slogging�ssyslog�html�

���� T� Ylonen� T� Kivinen� M� Saarinen� T� Rinne� and
S� Lehtinen� SSH protocol architecture� Internet
Draft� Internet Engineering Task Force� February
����� Work in progress�

