strlcpy and strlcat

consistent, safe, string copy and concatenation

Todd C. Miller
<Todd.Miller@cs.colorado.edu>

Theo de Raadt
<deraadt@openbsd.org>

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 1

Overview

Rationale

What’s wrong with using strncpy/strncat?
How do strlcpy/strlcat help?

What they don’t do

Implementation

Who's using them?

Where to get the code

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 2

4 N

Rationale

e Buffer overflows have become trivial to exploit
O Access to source code helps both sides

O Programmers are eradicating strcpy/strcat from
setuid programs

© Need something to easily replace calls to
strcpy/strcat

O strncpy/strncat are not a good match

\\ Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 3

-

Why not use strncpy/strncat?

strncpy/strncat not well suited to size-bounded
operations
* Non-intuitive API (lots of people get it wrong)
* Inconsistent use of the length/size parameter
e Difficult to detect truncation

e NUL fill in strncpy() has a hidden cost

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 4

-

Why Not (continued)

* strncpy/strncat API non-intuitive

O Found lots of misuse when auditing OpenBSD

© Many programmers assume strncpy/()
guarantees NUL-termination--it does not

© The programmer must clear the last byte
manually in case strlen(src) >= sizeof(dst)

Todd C. Miller—stricpy/stricat

Jurdo, 199/

Slide 5

-

o

Why Not (continued)

* Length parameter used inconsistently

O For strncpy() it is sizeof(dest)
For strncat() it is sizeof(dest) - 1

O Length parameter for strncat() must usually be
computed--often incorrectly Eg:
strncat(path, file, sizeof(path) - strlen(path) - 1);
e Difficult to detect truncation

O For strncpy, must check strlen(src)

O For strncat, must save the old length of dst

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 6

-

o

~

NUL fill in strncpy() has a hidden cost

e Found strncpy() of a small string into a 1K buffer

to be 3-5 times slower than strcpy() depending on
the CPU.

O This is the worst case scenario since you are

clearing many more bytes than you copy--but it

is also a very common case. Consider copying a
pathname info a buffer of size MAXPATHLEN.

O Probably not just the cost of clearing bytes, but
effectively fushing the data cache.

e strlcpy() performs almost as well as strcpy()

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 7

How do strlcpy/stricat help?
size_t strlcat (char *dst, const char *src, size_t siz)
size_t strlcpy (char *dst, const char *src, size_t siz)
e Consistent, unambiguous interface
O Always NUL-terminate the destination

© Size parameter is the full size of the destination
(Eg: si zeof (buf))

© Neither function zero-fills the destination
(except for the final NUL to terminate the
string).

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 8

-

~

How do strlcpy/stricat help? (continued)

* Both functions provide a useful return value

O Return the length of the dst string as if there
was infinite space

O For strlcpy() this is just strlen(src)
O For strlcat() this is strlen(src) + strlen(orig_dst)
O Similar to BSD and C9X snprintf() return value

© Makes checking for truncation easy
If rval >= siz, truncation occurred

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 9

-

What strlcpy/strlcat are not...

 They are not an attempt to somehow "fix" string
handling in C

O If that’s what you want there are other options
(including C++)

* They only operate on normal C strings

O Source string must end in a NUL since we
traverse the entire string

© Not usable for strings in st ruct ut np for
example

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 10

-

Simplest implementation of stricpy()

size t strlcpy(char *dst, const char *src,

size t siz)

{
size t n;
size t slen = strlen(src);
1 f (siz
I1f ((n = MN(slen, siz - 1)))
mencpy(dst, src, n);
dst[n] = "\0";
return(slen);
}

Todd C. Miller—stricpy/stricat

~

Jurdo, 199/

Slide 11

-

Simplest implementation of stricat()

size t strlcat(char *dst, const char *src,

{

size t siz)
size t dlen = strlen(dst);

/* Make sure siz Is sane */
I f (dlen < siz - 1)
return(dlen + strlcpy(dst + dl en,
src, siz - dlen));
el se
return(dlen + strlen(src));

~

Todd C. Miller—stricpy/stricat Jurt O, 199/

Slide 12

-

o

Who's using strlcpy/stricat?

e Operating Systems
O First shipped with OpenBSD 2.4

O Approved for inclusion in a future release of
Solaris

e Applications
O Used by the rsync package

O Simple implementation makes it easy to check for
the function in a configure script and provide

it if needed
Todd C. Miller—stricpy/stricat JurtlO, 199/

Slide 13

Where to get the code

OpenBSD 2.5 CD'’s

Any OpenBSD f{tp mirror

O pub/OpenBSD/lib/libc/string/strlcpy.c
O pub/OpenBSD/lib/libc/string/strlcat.c
O pub/OpenBSD/lib/libc/string/strlcpy.3
<Todd.Miller@cs.colorado.edu>

<deraadt@openbsd.org>

Todd C. Miller—stricpy/stricat

Jurdo, 199/

Slide 14

